283 research outputs found

    The effects of magnetic field, age, and intrinsic luminosity on Crab-like pulsar wind nebulae

    Get PDF
    We investigate the time-dependent behavior of Crab-like pulsar wind nebulae (PWNe) generating a set of models using 4 different initial spin-down luminosities (L0={1,0.1,0.01,0.001}×L0,CrabL_0 =\{1,0.1,0.01,0.001\} \times L_{0, {\rm Crab}}), 8 values of magnetic fraction (η=\eta = 0.001, 0.01, 0.03, 0.1, 0.5, 0.9, 0.99, and 0.999, i.e., from fully particle dominated to fully magnetically dominated nebulae), and 3 distinctive ages: 940, 3000, and 9000 years. We find that the self-synchrotron Compton (SSC) contribution is irrelevant for LSDL_{SD}=0.1, 1, and 10% of the Crab power, disregarding the age and the magnetic fraction. SSC only becomes relevant for highly energetic (70\sim 70% of the Crab), particle dominated nebulae at low ages (of less than a few kyr), located in a FIR background with relatively low energy density. Since no pulsar other than Crab is known to have these features, these results clarify why the Crab Nebula, and only it, is SSC dominated. No young PWN would be detectable at TeV energies if the pulsar's spin-down power is 0.1% Crab or lower. For 1% of the Crab spin-down, only particle dominated nebulae can be detected by H.E.S.S.-like telescopes when young enough (with details depending on the precise injection and environmental parameters). Above 10% of the Crab's power, all PWNe are detectable by H.E.S.S.-like telescopes if they are particle dominated, no matter the age. The impact of the magnetic fraction on the final SED is varied and important, generating order of magnitude variations in the luminosity output for systems that are otherwise the same (equal PP, P˙\dot P, injection, and environment).Comment: Accepted for publication in MNRA

    Is there room for highly magnetized pulsar wind nebulae among those non-detected at TeV?

    Get PDF
    We make a time-dependent characterization of pulsar wind nebulae (PWNe) surrounding some of the highest spin-down pulsars that have not yet been detected at TeV. Our aim is assessing their possible level of magnetization. We analyze the nebulae driven by J2022+3842 in G76.9+1.0, J0540-6919 in N158A (the Crab twin), J1400--6325 in G310.6--1.6, and J1124--5916 in G292.0+0.18, none of which have been found at TeV energies. For comparison we refer to published models of G54.1+0.3, the Crab nebula, and develop a model for N157B in the Large Magellanic Cloud (LMC). We conclude that further observations of N158A could lead to its detection at VHE. According to our model, a FIR energy density of 5 eV cm3^{-3} could already lead to a detection in H.E.S.S. (assuming no other IC target field) within 50 hours of exposure and just the CMB inverse Compton contribution would produce VHE photons at the CTA sensitivity. We also propose models for G76.9+1.0, G310.6--1.6 and G292.0+1.8 which suggest their TeV detection in a moderate exposure for the latter two with the current generation of Cherenkov telescopes. We analyze the possibility that these PWNe are highly magnetized, where the low number of particles explains the residual detection in X-rays and their lack of detection at TeV energies.Comment: Accepted for publication in MNRA

    Determination of the Night Sky Background around the Crab pulsar using its optical pulsation

    Full text link
    The poor angular resolution of imaging gamma-ray telescopes is offset by the large reflector areas of next generation telescopes such as MAGIC (17~m diameter), which makes the study of optical emission associated with some gamma-ray sources feasible. Furthermore, the extremely fast time response of photomultipliers (PMs) makes them ideal detectors for fast (subsecond) optical transients and periodic sources like pulsars. The optical pulse of the Crab pulsar was detected with the HEGRA CT1 central pixel using a modified PM, similar to the future MAGIC camera PMs. The purpose of these periodic observations was to determine the light of the night sky (LONS) for the galactic anticenter Crab region.Our results are between 2.5 and 3 times larger than the previously measured LONS (outside the galactic plane), as expected since the Crab pulsar is in the galactic plane, which implies a slightly higher energy threshold for Crab observations, if the higher value of CT1 measured LONS rate for galactic sources is used.Comment: 19 pages, 6 figures, accepted by Astroparticle Physic

    CTA and cosmic-ray diffusion in molecular clouds

    Full text link
    Molecular clouds act as primary targets for cosmic-ray interactions and are expected to shine in gamma-rays as a by-product of these interactions. Indeed several detected gamma-ray sources both in HE and VHE gamma-rays (HE: 100 MeV < E 100 GeV) have been directly or indirectly associated with molecular clouds. Information on the local diffusion coefficient and the local cosmic-ray population can be deduced from the observed gamma-ray signals. In this work we concentrate on the capability of the forthcoming Cherenkov Telescope Array Observatory (CTA) to provide such measurements. We investigate the expected emission from clouds hosting an accelerator, exploring the parameter space for different modes of acceleration, age of the source, cloud density profile, and cosmic ray diffusion coefficient. We present some of the most interesting cases for CTA regarding this science topic. The simulated gamma-ray fluxes depend strongly on the input parameters. In some cases, from CTA data it will be possible to constrain both the properties of the accelerator and the propagation mode of cosmic rays in the cloud.Comment: In Proceedings of the 2012 Heidelberg Symposium on High Energy Gamma-Ray Astronomy. All CTA contributions at arXiv:1211.184

    H.E.S.S. observations of the Large Magellanic Cloud

    Full text link
    The Large Magellanic Cloud (LMC) is a satellite galaxy of the Milky Way at a distance of approximately 48 kpc. Despite its distance it harbours several interesting targets for TeV gamma-ray observations. The composite supernova remnant N 157B/PSR J05367-6910 was discovered by H.E.S.S. being an emitter of very high energy (VHE) gamma-rays. It is the most distant pulsar wind nebula ever detected in VHE gamma-rays. Another very exciting target is SN 1987A, the remnant of the most recent supernova explosion that occurred in the neighbourhood of the Milky Way. Models for Cosmic Ray acceleration in this remnant predict gamma-ray emission at a level detectable by H.E.S.S. but this has not been detected so far. Fermi/LAT discovered diffuse high energy (HE) gamma-ray emission from the general direction of the massive star forming region 30 Doradus but no clear evidence for emission from either N 157B or SN 1987A has been published. The part of the LMC containing these objects has been observed regularly with the H.E.S.S. telescopes since 2003. With deep observations carried out in 2010 a very good exposure of this part of the sky has been obtained. The current status of the H.E.S.S. LMC observations is reported along with new results on N 157B and SN 1987A.Comment: 4 pages, 3 figures, proceedings of the 32nd Internatioal Cosmic Ray Conference, Beijing 201

    A Population of Teraelectronvolt Pulsar Wind Nebulae in the H.E.S.S. Galactic Plane Survey

    Full text link
    The most numerous source class that emerged from the H.E.S.S. Galactic Plane Survey are Pulsar Wind Nebulae (PWNe). The 2013 reanalysis of this survey, undertaken after almost 10 years of observations, provides us with the most sensitive and most complete census of gamma-ray PWNe to date. In addition to a uniform analysis of spectral and morphological parameters, for the first time also flux upper limits for energetic young pulsars were extracted from the data. We present a discussion of the correlation between energetic pulsars and TeV objects, and their respective properties. We will put the results in context with the current theoretical understanding of PWNe and evaluate the plausibility of previously non-established PWN candidates.Comment: 4 pages, 5 figures. In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil

    Search for Gamma-Ray Emission from AE Aquarii with Seven Years of Fermi-LAT Observations

    Get PDF
    AE Aquarii (AE Aqr) is a cataclysmic binary hosting one of the fastest rotating (Pspin_{\rm spin} = 33.08 s) white dwarfs known. Based on seven years of Fermi Large Area Telescope (LAT) Pass 8 data, we report on a deep search for gamma-ray emission from AE Aqr. Using X-ray observations from ASCA, XMM-Newton, Chandra, Swift, Suzaku, and NuSTAR, spanning 20 years, we substantially extend and improve the spin ephemeris of AE Aqr. Using this ephemeris, we searched for gamma-ray pulsations at the spin period of the white dwarf. No gamma-ray pulsations were detected above 3 σ\sigma significance. Neither phase-averaged gamma-ray emission nor gamma-ray variability of AE Aquarii is detected by Fermi-LAT. We impose the most restrictive upper limit to the gamma-ray flux from AE Aqr to date: 1.3×10121.3\times 10^{-12} erg cm2^{-2} s1^{-1} in the 100 MeV-300 GeV energy range, providing constraints on models.Comment: 16 pages, 4 figures, 1 table, Accepted for publication in Ap
    corecore